Tobacco stalk as promising feedstock for second generation ethanol production

Juliano Bragatto, Daniela Defavari do Nascimento, Luis Felipe Boaretto, Fernando Segato, Carlos A. Labate

Resumo


A composição química e as propriedades morfológicas das fibras, de materiais lignocelulósicos, são fatores-chave que afetam a eficiência da produção de biocombustíveis durante os processos de conversão. Assim, a composição química de plantas de tabaco foi examinada para avaliar seu potencial para produção de bioetanol. Após hidrólise de tecidos (xilema, medula, folhas e raízes) com ácido trifluoroacético e ácido sulfúrico, os hidrolisados foram analisados através de sua composição de carboidratos utilizando cromatografia de troca iônica (HPAE-PAD). Na haste de tabaco (tecido do xilema), os teores de carboidratos e lignina foram 62,4% e 20,8% de matéria seca (MS), respectivamente. Esses valores são muito próximos dos encontrados em madeira (eucalipto) e em bagaço de cana. As propriedades morfológicas das fibras do tecido xilemático e cortes histológicos efetuados na base do caule foram também avaliados e os resultados mostraram que as suas características são semelhantes aos de biomassa utilizada para a produção de biocombustíveis. A fibra no xilema de plantas de tabaco apresentaram valores de comprimento, diâmetro, espessura da parede celular e lumem de 0,95 mM, 30,7 uM, 20,8 uM, e 4,9 uM, respectivamente. Portanto, através da produção de plantas de tabaco no Sul do Brasil, este trabalho identificou cerca de 2 milhões de toneladas secas / ano de biomassa como caules de tabaco com grande potencial para produção de bioetanol de segunda geração ou biopolímeros. Assim, de acordo com a composição química dos caules de tabaco, a produção de etanol pode chegar a 108 litros por tonelada de peso seco.

Texto completo:

PDF

Referências


ANDRIANOV, V., BORISJUK, N., POGREBNYAK, N., BRINKER, A., DIXON, J., SPITSIN, S., FLYNN, J., MATYSZCZUK, P., ANDRYSZAK, K., LAURELLI, M., GOLOVKIN, M., KOPROWSKI, H. Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. Plant Biotechnology Journal, v. 8, p. 1–11, 2009.

AGRUPIS, S., MAEKAWA, E., SUZUKI, K. Industrial utilization of tobacco stalks II: Preparation and characterization of tobacco pulp by steam explosion pulping. Journal Wood Science, v. 46, p.222-229, 2002.

ANTAL M. J. JR, MOCK W. S. L., RICHARDS, G. N. Carbohydrate Research, v. 199, p. 91–109, 1990.

ASTM, E. 1690-01. Standard Practice for Determination of Ethanol Extractives in Biomass. American Society for Testing and Materials, USA, 2001.

ASTM, E. 1721-01. Standard Test Method for Acid Insoluble residue in Biomass. American Society for Testing and Materials, USA, 2001.

ASTM, E. 1757-01. Standard Test Method for Determination of Carbohydrates in Biomass by High Performance Liquid Chromatography. American Society for Testing and Materials, USA, 2001.

ASTM, E. 1758-01. Standard Practice for Preparation of Biomass for Compositional Analysis. American Society for Testing and Materials, USA, 2001. BELINI, U. L., TOMAZELLO, M. F., CHAGAS, M. P., DIAS, C. T. S. Characterization of wood anatomy, basic density, and morphology of Eucalyptus grandis chips for MDF production. Revista Árvore, Viçosa-MG, v. 32. n. 4. July/August, p. 707-713, 2008.

BRAZILIAN TOBACCO YEARBOOK. Vencato A. Z. Santa Cruz do Sul. Ed. Gazeta Santa Cruz. 176 p., 2011

CARPITA N. C., GIBEAUT D. M. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant Journal, v. 3, p. 1–30, 1993.

CARROLL, A; SOMERVILLE, C. Cellulosic Biofuel. Annual Review of Plant Biology, Palo Alto, v. 60, p. 165-182. 2009.

DOE US. U.S. Department of Energy. Theoretical Ethanol Yield Calculator. http://www1.eere.energy.gov/biomass/ethanol_yield_calculator.html. Access on Aug/2012.

DOP, P., GAUTE, A. Manuel de tecnique botanique. 2. ed. Paris: Lamarre, 594 p., 1928. FAOSTAT, 2012. Food and Agriculture Organization of the United Nations. Access on: july/2012.

FRANKLIN G.L. Permanent preparations of macerated wood fibers. Tropical Woods, v. 49, p. 21-22, 1937.

FENGEL, D., WEGENER, G. hydrolysis of polysaccharides with trifluorocetic acid and its application to rapid wood analysis. In: BROWN, R. D., JURASEK, L. (Eds), Hydrolysis of Cellulose: Mechanisms of Enzimatic and Acid Catalysis Advances in Chemistry series. no 181. American Chemical Society, p. 145-158. 1979.

FITZPATRICK, M., CHAMPAGNE, P., CUNNINGHAM, M. F., WHITNEY, R. A. A biorefinery processing perspective: Treatment of lignocellulosic material for the production of value-added products. Bioresource Technology, v. 101, p. 8915-8522, 2010.

FERGUS, B. J., GORING D. A. I. The location of guaiacyl and syringyl lignins in birch xylem tissue. Holzforschung, v. 24, p. 113-117, 1970.

HOAGLAND, D. R., ARNON, D. I. The water culture method for growing plants without soil, California Agriculture Experimental Station Circular, 347 p., 1950.

HEPWORTH, D. G., VINCENT, J. F. V., SCHUCH, W. Using viscoelastic properties of the woody tissue from tobacco plants (Nicotiana tabacum) to comment on the molecular structure of cell walls. Annals of Botany, v. 81, p. 729-734, 1998.

KAMM, B., GRUBER, P. R., KAMM, M., Biorefinery industrial processes and products. Status and future direction, vols. 1 and 2. Weinheim: Wiley-Verlay Gmbtt and Co KGaA; 2006 KOUTINAS, A.A., WANG, R.H., WEBB, C. The biochemurgist –Bioconversion of agricultural raw materials for chemical production. Biofuel, Bioproducts and Biorefining, v. 1, p. 24-38, 2007.

LEV-YADUN, S. Cellular patterns in dicotyledonous woods: their regulation. In: Cell and Molecular Biology of Wood Formation (R. SAVIDGE, J. BARNETT AND R. NAPIER, eds). Oxford, UK: Bios Scientific Publishers, p. 315-324, 2000.

LYND, L. R., LASER, M. S., BRANSBY, D., DALE, B. E., DAVISON, B., HAMILTON, R., HIMMEL, M., KELLER, M., MCMILLAN, J. D,. SHEEHAN, J., WYMAN, C. E. How biotech can transform biofuels. Nature Biotecnology. V. 26, n. 2, p. 169-172, 2008.

PU, Y., ZHANG, D., SINGH, P. M., RAGAUSKAS, A. J. The new forestry biofuels sector. Biofuels, Bioproducts and Biorefining. V. 2, p. 58–73, 2008.

PESEVSKI, M. D., ILIEV, B. M., ZIVKOVIC, D. J., POPOVSKA,V. T. J., SRBINOSKA, M. A., FILIPOSKI, B. Possibilities for utilization of tobacco stems for production of energetic briquettes. Journal of Agricultural Sciences. V. 55, n. 1, p. 45-54, 2010.

RAVEN, P. H., EVERT, R. F., EICHHORN, S. E. Biology of plants. New York: Worth Publ., 791 p., 2001.

ROSILLO-CALLE, F., TSCHIRLEY, J. Food versus Fuel: Setting the Scene. In: Food versus Fuel: An Informed Introduction to Biofuels. 1a ed. New York: Zed Books, cap. 1, p. 7-28, 2010.

SARKANEN, S. Template polymerization in lignin biosynthesis. In Lignin and Lignan Biosynthesis (eds N.G. LEWIS AND S. SARKANEN), American Chemical Society Symposium, Washington, DC, p. 194-208, 1998.

SELVENDRAN, R. R., O'NEILL, M. A. Isolation and analysis of cell walls from plant material. Methods of Biochemical Analysis, v. 32, p. 25-153, 1987.

SCHILLBERG, S; FISCHER, R; EMANS, N. Molecular farming of recombinant antibodies in plants. Cellular and Moleclular Life Sciences. V. 60, p. 433–445, 2003.

SHAKHES, J.; MARANDI, M. A. B.; ZEINALY, F.; SARAIAN, A.; SGHAFI, T. Tobacco residuals as promising lignocellulosic material for pulp and paper industry. Bioresusrces, v. 6, n. 4, p. 481-4493, 2011.

TAPPI T249 cm-85. Test method T249 cm-85: Carbohydrate Composition of Extractive-free Wood and Wood Pulp by Gas-liquid Chromatography. Technical Association of the Pulp and Paper Industry, Atlanta, USA, 1 v., 1991.

TAPPI T222 om-98. Test method T222 om-98: Acid Insoluble Lignin Wood and Pulp. Technical Association of the Pulp and Paper Industry, Atlanta, USA, 1 v., 1998.

TAPPI T264 om-88. Test method T264 om-88: Preparation of Wood for Chemical Analysis. Technical Association of the Pulp and Paper Industry, Atlanta, USA, 1 v., 1999.

TEULIÉRES, C.; MARQUE, C.; BOUDET, A. M. Genetic transformation of Eucalyptus. In: BAJAJ, Y.P.S. (Ed.). Plant protoplasts and genetic engineering. Berlin: Springer- Verlag, p. 289-306. (Biotechnology in Agriculture and Forest, 29), 1994.

USTA, N. Use of tobacco seed oil methyl ester in a turbocharged indirect injection diesel engine. Biomass Bioenergy, v. 28, p. 77–86, 2005.

KAMM, B., GRUBER, P. R., KAMM, M., Biorefinery industrial processes and products. Status and future direction, vols. 1 and 2. Weinheim: Wiley-Verlay Gmbtt and Co KGaA; 2006.


Apontamentos

  • Não há apontamentos.


______________________________________________________________
FATEC Piracicaba - www.fatecpiracicaba.edu.br