Produção de extratos enzimáticos por fungos filamentosos utilizando resíduos agrícolas

Fabrícia Vieira silva Bomtempo, Solange Cristina Carreiro, Raphael Sanzio Pimenta, Emerson Adriano Guarda

Resumo


A produção enzimática é hoje um mercado em evidência graças a um aumento cada vez mais significativo do uso de enzimas em diversos processos industriais, como por exemplo, na fabricação do promissor etanol celulósico. Porém, o alto custo de produção, devido a fatores como dificuldade de purificação enzimática e preço elevado do substrato, ainda limita a consolidação desse mercado. Dentro desse cenário, o intuito dessa revisão foi apresentar as vantagens de uso e as propriedades desse material residual lignocelulósico, os principais pré-tratamentos ocorrentes, as celulases e o grande potencial dos fungos em sua produção e as perspectivas de melhoria do processo produtivo através da otimização das condições de produção dessas enzimas

Texto completo:

PDF

Referências


ARANTES V.; SADDLER J. N. Access to cellulose limits the efficiency of enzymatic hydrolysis: therole of amorphogenesis. Biotechnology for Biofuels, v. 3, n. 4, p. 1-11, 2010.

BALLESTEROS, M. Estado del desarrollo tecnológico del aprovechamiento de biomasa: Biocombustibles para el sector del transporte. Energía, v. 161, p. 29-34, 2001.

BANSAL, N.; TEWARI, R.; SONI, R.; SONI, S. K. Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Management, v. 32, p. 1341-1346, 2012.

BERLIN, A.; GILKES, N.; KILBURN, D.; BURA, R.; MARKOV, A.; SKOMAROVSKY, A.; OKUNEV, O.; GUSAKOV, A.; MAXIMENKO, V.; GREGG, D.; SINITSYN, A.; SADDLER J. Evaluation of novel fungal cellulose preparations for ability to hydrolyze softwood substrates - evidence for the role of accessory enzymes. Enzyme Microb Technol, v. 37 p. 175-184, 2005.

BINOD, P.; SINDHU, R.; SINGHANIA, R. R.; VIKRAM, S.; DEVI, L.; NAGALAKSHMI, S.; KURIEN, N.; SUKUMARAN, R. K.; PANDEY, A. Bioethanol production from rice straw: An overview. Bioresource Technology, v. 101, n. 13, p. 4767-4774, 2010.

BISARIA, V. S.; CHOSE, T. K. Biodegradation of cellulosic materials: substrates, microorganisms, enzymes and products. Enzyme and Microbial Technology, v. 3, p. 90-104, 1981.

BROWN JR, R. M.; SAXENA, I. M.; KUDLICKA, K. Cellulose biosynthesis in higher plants. Trends in plant science, v. 1, p. 149-156, 1996.

CAIRNS, J. R. K.; ESEN, A. β-Glucosidases. Cell. Mol. Life Sci. V. 67, p. 3389-3405, 2010.

CHAHAL, D. S. Solid-state fermentation with Trichoderma reesei for cellulase production. Appl. Environ. Microbiol, v. 49, p. 205–210, 1985.

CARDOSO, W. S.; SANTOS, F. A.; MOTA, C. M.; TARDIN, F. D.; RESENDE, S. T. QUEIROZ, J. H. Pré-tratamentos de biomassa para produção de etanol de segunda geração. Revista Analytica, n. 56, p. 54-74, 2012.

CASPETA, L.; CARO-BERMÚDEZ, M. A.; PONCE-NOYOLA, T.; MARTINEZ, A. Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol. Applied Energy, v. 113, p. 277-286, 2014.

CASTRO, A. M.; PEREIRA JUNIOR, N. Produção, propriedades e aplicação de celulases na hidrólise de resíduos agroindustriais. Química Nova, v. 33, n. 1, p. 181-188, 2010.

CHAMPAGNE, P. Bioethanol from agricultural waste residues. Environmental Progress, v. 27, p. 51-57, 2008.

CHUNDAWAT, S. P. S.; DONOHOE, B. S.; SOUSA, L. D.; ELDER, T.; AGARWAL, U. P.; LU, F. C.; RALPH, J.; HIMMEL, M. E.; BALAN, V.; DALE, B. E. Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy Environ. Sci., v. 4, p. 973–984, 2011.

COLETÂNEA. Estado-da-arte da produção de etanol a partir da madeira. Coletânea: Tecnologia da produção de etanol a partir de materiais celulósicos. Brasília, v. 1, 1981.

COUTO, S. R.; SANROMÁN, M. A. Application of solid-state fermentation to food industry – A Review. Journal of Food Engineering, Califórnia, v. 76, n. 3, p. 291-302, 2006.

DAMASO, M. C. T.; PASSIONOTO, M. A.; FREITAS, S. C.; FREIRE, D. M. G.; LAGO, R. C. A.; COURI, S. Utilization of agroindustrial residues for lipase production by solid-state fermentation. Brazilian Journal Microbiology, v. 39, p. 676-681, 2008.

DASHTBAN, M.; MAKI, M.; LEUNG, K. T.; MAO, C.; QIN, W. Cellulase activities in biomass conversion: measurement methods and comparison. Critical Reviews in Biotechnology, v, 30, n. 4, p. 302-309, 2010.

DA SILVA, R.; YIM, D. K.; PARK, Y. K. Application of thermostable xylanases from Humicola sp for pulp improvement. Journal Fermentation and Bioengineering, v. 77, p. 109-111, 1994.

DING, S. Y.; HIMMEL, M. E. The maize primary cell wall microfibril: a new model derived from direct visualization. J. Agric. Food Chem., v. 54, p. 597-606, 2006.

DUENAS, R.; TENGERDY, R. P.; GUTIERREZ-CORREA, M. Cellulase production by mixed fungi in solid state fermentation of bagasse. World J. Microbiol. Biotechnol., v. 11, p. 333-337, 1995.

ELIBOL, M. Optimization of medium composition for actinorhodin production by Streptomyces coelicolor A3 (2) with response surface methodology. Process. Biochem., v. 39, p.1057–1062, 2003.

FARINAS, C. S.; LEMO, V.; RODRÍGUEZ-ZÚÑIGA, U. F.; NETO, V. B.; COURI, S. Avaliação de diferentes resíduos agroindustriais como substratos para a Produção de Celulases por Fermentação Semi-sólida. Boletim de Pesquisa e Desenvolvimento, Embrapa Instrumentação Agropecuária, São Carlos, 2008.

FERREIRA-FILHO, E. X. Purification and characterization of a β-glucosidase from solid-state cultures of Humicola griseavar. thermoidea. Can. J. Microbiol, v. 42, n. 1, p.1-5, 1996.

FRENCH, C. E. Review - Synthetic biology and biomass conversion: a match made in heaven? J. R. Soc. Interface, v. 6, p. 547–558, 2009.

GHOSE, T. K. Measurement of cellulase activities. Pure & Applied Chemistry, v. 59, n. 2, p. 257-268, 1987.

GUIMARÃES, B. G.; SOUCHON, H.; LYTLE, B. L.; WU J. H. D.; ALZARI, P. M. The structure and catalytic mechanism of cellobiohydrolases Cels, the major enzymatic component of the Clostridium thermocellum cellulosome. Journal of Molecular Biology. 230, 587–596, 2002.

HERNANDEZ-SALAS, J. M.; VILLA-RAMÍREZ, M. S.; VELOZ-RENDÓN, J. S.; RIVERA-HERNÁNDEZ, K. N.; GONZÁLEZ-CÉSAR, R. A.; PLASCENCIA-ESPINOSA, M. A.; TREJO-ESTRADA, S. R. Comparative hydrolysis and fermentation of sugarcane and agave bagasse. Bioresource Technology, v. 100, p. 1238-1245, 2009.

HÖLKER, U.; HÖFER, M.; LENZ, J. Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Applied Microbiology and Biotechnology, v. 64, n. 2, p. 175-186, 2004.

HU, T. Q. Characterization of lignocellulosic materials. Wiley-blackwell, 2008.

IMAI, M.; IKARI, K.; SUZUKI, I. High-performance hydrolysis of cellulose using mixed cellulase species and ultrasonication pretratment. Biochemical Engineering Journal, v. 17, p. 79–83, 2004.

JORGENSEN, H.; MORKEBERG, A.; KROGH, K. B. R.; OLSSON, L. Production of cellulases and hemicellulases by three Penicillium species: effect of substrate and evaluation of cellulose adsorption by capillary electrophoresis. Enzyme and Microbial Technology, v. 36, p. 42-48, 2005.

KANG, S. W.; PARK, Y. S.; LEE, J. S.; HONG, S. I.; KIM, S. W. Production of cellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresource of Technology, v. 91, p. 153-156, 2004.

KHAN, M. H.; ALI, S.; FAKHRU’L RAZI, A.; ALAM, Z. Use of fungi for the bioconversion of rice straw into cellulase enzyme - Part B: Pesticides, Food Contaminants, and Agricultural Wastes. Journal of Environmental Science and Health, v. 42, p. 381 386, 2007.

KIRAN, E. U.; TRZCINSK, A. P.; NG, J. W.; LIU, Y. U. Bioconversion of food waste to energy: a review. Fuel, v. 134, p. 389–399, 2014.

KUHAD, R. C.; GUPTA, R.; SINGH, A. Microbial Cellulases and Their Industrial Applications. Enzyme Research, v. 2011, p. 1-10, 2011.

KUO, C. H.; LEE, C. K. Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohydrate Polymers, v. 77, p. 41–46, 2009.

LASER, M.; SCHULMAN, D.; ALLEN, S.; LICHWA, J.; ANTAL, M.; LYND, L. A comparison of liquid hot water and steam pretreatment of sugarcane bagasse for bioconversion to ethanol. Bioresource Technology, v. 81, p. 33–44, 2002.

LATIFIAN, M.; HAMIDI-ESFAHANI, Z.; BARZEGAR, M. Trichoderma reesei mutants under solid-state fermentation conditions. Bioresource Technology, v. 98, p. 3634-3637, 2007.

LAVARACK, B. P.; GRIFFIN, G. J.; RODMAN, D. The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass and Bioenergy, v. 23, p. 367–380, 2002.

LEE, Y. J.; CHUNG, C. H.; DAY, D. F. Sugarcane bagasse oxidation using a combination of hypochlorite and peroxide. Bioresource Technology, v. 100, p. 935–941, 2009.

LI, Q.; HE, W-C.; XIAN, M.; JUN, G.; XU, X.; YANG, J-M.; LI, L-Z. Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresource Technology, v. 100, p. 3570–3575, 2009.

LIU, B. L.; TZENG, Y. M. Optimization of growth medium for production of spores from Bacillus thuringiensis using response surface methodology. Bioprocess Eng., v. 18, p. 413–418, 1998.

LIU, D.; CHEN, X. ; YUE, Y.; CHEN, M.; WU, Q. Structure and rheology of nanocrystalline cellulose. Carbohydrate Polymer, v. 82, p. 329-336, 2011.

LYND, L. R.; ELANDER, R. T.; WYMAN, C. E. Likely features and costs of mature biomass ethanol technology. Applied Biochemistry and Biotechnology, v. 57/58, p. 741–761, 1996.

MACHADO, C. M. M.; ABREU, F. R. Produção de álcool combustível a partir de carboidratos. Revista de Política Agrícola, n. 3, p. 74-78, 2006.

MADAMWAR, D.; PATEL, S.; PAREKH, M. Solid state fermentation for cellulase and beta-glucosidase production by Aspergillus niger. J. Ferment. Bioeng., v. 67, p. 424–426, 1989.

MARTÍN, C.; KLINKE, H. B.; THOMSEN, A. B. Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme and Microbial Technology, v. 40, p. 426–432, 2007.

MEKALA, N.K., SINGHANIA, R.R., SUKUMARAN, R.K., PANDEY, A. Cellulase production under solid-state fermentation by Trichoderma reesei RUT C30: statistical optimization of process parameters. Appl. Biochem. Biotechnol., v. 151, p. 122–131, 2008.

MENEZES, T. J. B. Os fungos na indústria. Boletim da SBCTA, v. 31, n. 2, p. 116-120, 1997.

MOSIER, N.; WYMAN, C.; DALE, B.; ELANDER, R.; LEE, Y. Y.; HOLTZAPPLE, M.; LADISCH, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, v. 96, p. 673–686, 2005.

MUÑOZ, I. G.; UBHAYASEKERA, W.; HENRIKSSON, H.; SZABO, I.; PETTERSSON, G.; JOHANSSON, G.; MOWBRAY, S. L.; STAHLBERG, J. Family 7 cellobiohydrolases from Phanerochaete chrysosporim: crystal structure of the catalytic module of Cel7D (CHB 58) at 1.32 Å resolution and homology models of the lisozymes. Journal of Molecular Biology, v. 314, p. 1097–1111, 2001.

NEUREITER, M.; DANNER, H.; THOMASSER, C.; SAIDI, B.; BRAUN, R. Dilute-acid hydrolysis of sugarcane bagasse at varying conditions. Applied Biochemistry and Biotechnology, v. 98, n. 100, p. 49–58, 2002.

OLSSON, L.; HAHN-HAGERDAL, B. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb. Technol., v. 118, p. 312-331, 1996.

ORLANDELLI, R. C.; SPECIAN, V.; FELBER, A. C.;, PAMPHILE, J. A. Enzimas de interesse industrial: produção por fungos e aplicações. SaBios: Rev. Saúde e Biol., v. 7, n. 3, p. 97-109, 2012.

PANDEY, A.; SOCCOL, C. R. Bioconversion of biomass: a case study of ligno-cellulosics bioconversions in solid state fermentation. Brazilian Arch. Biol. Technol., v. 41, n. 4, p. 379-390, 1998.

PANDEY, A.; SOCCOL, C.; SOCCOL, V. Biotechnological potential of agro-industrial residues: Sugarcane bagasse. Bioresource Technology, v. 74, n. 2, p. 69-80, 2000.

PARISI, F. Advances in lignocellulosic hydrolysis and in the utilisation of the hydrolysates. Adv. Biochemistry Eng, v. 38, p. 53-87, 1989.

PEREIRA-JR, N.; COUTO, M. A. P. G.; SANTA-ANNA, L. M. M. Biomass of lignocellulosic composition for fuel ethanol production and the context of biorefinery. In. ______. Series on Biotechnology, Rio de Janeiro, RJ: Ed. Amiga Digital UFRJ, v. 2, 2008, p. 2- 45.

RABELO, S. C. Avaliação de desempenho do pré-tratamento com peróxido de hidrogênio alcalino para a hidrólise enzimática de bagaço de cana-de-açúcar. 2007. 150 f. Dissertação (Mestrado em Engenharia Química) Faculdade de Engenharia Química, Universidade Estadual de Campinas, Campinas, SP, 2007.

RABELO, S. C.; MACIEL FILHO, R.; COSTA, A. C. A comparison between lime and alkaline hydrogen peroxide pretreatments of sugarcane bagasse for ethanol production. Applied Biochemistry and Biotechnology, v. 144, p. 87–100, 2008.

RABELO, S. C.; MACIEL FILHO, R.; COSTA, A. C. Lime pretreatment of sugarcane bagasse for bioethanol production. Applied Biochemistry and Biotechnology, v. 153, p. 139–150, 2009.

RODRIGUES, M. F. A. Produção de etanol via hidrólise enzimática de bagaço. Bioenergia: Desafios e Oportunidades de Negócios. Escola Politécnica da USP, 2009.

ROSGAARD, L.; PEDERSEN, S.; CHERRY, J. R.; HARRIS, P.; MEYER, A. S. Efficiency of new fungal cellulase systems in boosting enzymatic degradation of barley straw lignocellulose. Biotechnology Progress, v. 22, n. 22, p. 493–498, 2006.

SAINI, R., SAINI, J. K., ADSUL, M., PATEL, A. K., MATHUR, A., TULI, D., SINGHANIA, R. R. Enhanced cellulase production by Penicillium oxalicum for bio-ethanol application. Bioresource Technology, v. 188, p. 240–246, 2015.

SANTOS, F. A.; DE QUEIRÓZ, J. H.; COLODETTE, J. L.; FERNANDES, S. A.; GUIMARÃES, V. M.; REZENDE, S. T. Potencial da palha de cana-de-açúcar para produção de etanol – revisão. Quim. Nova, v. XY, n. 00, p. 1-7, 2012.

SCATENA, V. L.; SCREMIN-DIAS, E. Parênquima, Colênquima e Esclerênquima. In: APPEZATO-DA-GLÓRIA, B.; CARMELLO-GUERREIRO, S. M. Anatomia Vegetal. 2 ed. Viçosa: UFV, 2006, p 109-119.

SILVA, V. F. Panorama e perspectivas do etanol lignocelulósico. Revista Liberato, Novo Hamburgo, v. 13, n. 20, p. 1-15, jul./dez. 2012.

SINGH, K.; RICHA, K.; BOSE, H.; KARTHIK, L.; KUMAR, G.; RAO, K. V. B. Statistical media optimization and cellulase production from marine Bacillus VITRKHB. 3 Biotech., v. 4, p. 591–598, 2014.

SINGHANIA, R. R.; SUKUMARAN, R. K., PATEL, A. K., LARROCHE, C., PANDEY, A. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb. Tech., v. 46, p. 541-549, 2010.

STEVENS, B. J. H.; PAYNE, J. Cellulase and xylanase production by yeasts of genus Trichosporon. Journal of General Microbiology, v. 100, p. 381-393, 1977.

SUN, Y.; CHENG, J. J. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresource Technology, v. 96, p. 1599-1606, 2005.

SUN, Y.; CHENG, J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, vol. 83, n. 1, p. 1–11, 2002.

TAHERZADEH, M. J.; NIKLASSON, C. Ethanol from lignocellulosic materials: pretreatment, acid and enzymatic hydrolyses, and fermentation. ACS Symp Ser, v. 889, p. 49–68, 2004.

TUOR, U.; WINTERHALTER, K.; FIECHTER, A. Enzymes of white-rot-fungi involved in lignin degradation and ecological determinants for wood decay. Journal of Biotechnology, v. 41, n. 1, p. 1-17, 1995.

VÁSQUEZ, M. P.; DA SILVA, J. N. C.; DE SOUZA, M. B.; PEREIRA, N. Enzymatic hydrolysis optimization to ethanol production by Simultaneous Saccharification and Fermentation. Applied Biochemistry and Biotechnology, v. 136-140, p. 141-153, 2007.

VINIEGRA-GONZÁLEZ, G.; FAVELA-TORRES, E.; NOE AGUILAR, C.; de JESÚS ROMERO-GÓMEZ, J.; DÍAZ-GODÍNEZ, G.; AUGUR, C. Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochemical Engineering Journal, v. 13, p. 157-167, 2003.

WOOD, T. M.; GARCIA-CAMPAYO, V. Enzymology of cellulose degradation. Biodegradation. Netherlands, v. 1, n. 23, p. 147-167, 1990.

ZAMBARE, V. Optimization of amylase production from Bacillus sp. using statistics based experimental design. Emir. J. Food Agric., v. 23, p. 37–47, 2011.

ZHANG, Y. H. P. Reviving the carbohydrate economy via multi-product lignocelluloses biorefineries. Journal. of Indust. Microb. and Biotechnology, v. 35, p. 367-375, 2008.

ZHANG, S.; SANG, Q. Statistical optimization of cellulases production by Penicillium chrysogenum QML-2 under solid-state fermentation and primary application to chitosan hydrolysis. World J. Microbiol. Biotechnol., v. 28, p. 1163–1174, 2012.

ZHANG, S.; MARÉCHAL, F.; GASSNER, M.; PÉRIN-LEVASSEUR, Z.; QI, W.; REN, Z.; YAN, Y.; FAVRAT, D. Process modeling and integration of fuel ethanol production from lignocellulosic biomass based on double acid hydrolysis. Energy & Fuels, v. 23, p. 1759-1765, 2009.

ZHANG, Y. H. P.; HIMMEL, M. E.; MIELENZ, J. R. Outlook for cellulose improvement: Screening and selection strategies. Biotechnology Advances, v. 24, n. 5, p. 452-481, 2006.

ZHAO, Y.; LU, W. J.; WANG, H. T. Supercritical hydrolysis of cellulose for oligosaccharide production in combined technology. Chemical Engineering Journal, v. 150, p. 411–417, 2009.

ZIMMER, K. R.; BORRÉ, G. L.; TRENTIN, D. S.; JÚNIOR, C. W.; FRASSON, A. P.; GRAEFF, A. A.; GOMES, P.; MACEDO, A. J. Enzimas microbianas de uso terapêutico e diagnóstico clínico. Revista Liberato, Novo Hamburgo, v. 10, n. 14, p. 123-137, jul./dez. 2009.

ZHOU, J.; WANG, Y-H.; CHU, J.; LUO, L-Z.; ZHUANG, Y-P.; ZHANG, S-L. Optimization of cellulase mixture for efficient hydrolysis of steam-exploded corn stover by statistically designed experiments. Bioresource Technology, v. 100, p. 819–825, 2009.

YANG, M., FAN, D.D., LUO, Y.-E., MI, Y., HUI, J., GAO, P.F. Media optimization for cellulase production at low energy consumption with response surfasse methodology. Energy Source Part A, v. 34, p. 1883–1892, 2012.


Apontamentos

  • Não há apontamentos.


______________________________________________________________
FATEC Piracicaba - www.fatecpiracicaba.edu.br